Experiment Study and Numerical analysis of (110) Silicon Base Microchannel Applying on Electronic Cooling

نویسندگان

  • C. S. Yu
  • J. S. Yu
  • S. W. Kang
چکیده

Microchannel heat sink is fabricated on silicon wafer by anisotropic etching, and used Pyrex #7740 as a transparent cover which integrated by anode bonding. Rectangular microchannel presents the flow phenomena of fluid in micro scale, and this study focus on the boundary conditions which hydraulic diameter (Dh) is from 80mm to 530mm and Aspect ratio is from 0.24~7.8 of working fluid (DI water). While the size of microchannel is decreasing, laminar flow occurs on the low Reynolds number, which caused by the interaction of viscosity and friction on boundary layer. Sequentially, the influence of dimension decreasing on microchannel that induced transition and turbulent flow in early stage as Reynolds number is still in the range of 600~800. Pressure drop is high (2 bar) when fluid flows through the micro channel, and flux is constrained by the flow resistance during experiment operating. In this study, it takes effect by increasing aspect ratio to reduce pressure drop and enlarge the conductive surface. Geometry of microchannel, hydraulic diameter, and aspect ratio are the key factors in flow phenomena investigation. This research presents the difference between micro scale flow and traditional pipe flow by consideration of Reynolds number. By using computer aided engineering to optimize the aspect ratio of microchannel, which can find the maximum conductive surface under the limitation of pressure drop. The best value of aspect ratio is 0.88~1.22. The simulation result makes good sequence with experiment data. Based on this methodology, numerical analysis can be used to design the optimal microchannel on wafer for cooling hot spot. Key word:Microchannel, (110) Silicone, CAE, Heat transfer

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Study of Transient Electronic Chip Cooling by Liquid Flow in Microchannel Heat Sinks

Cooling of electronic chips has become a critical aspect in the development of electronic devices. Overheating may cause the malfunction or damage of electronics. The time needed for heat removal is particularly important in a wide range of electronic systems, such as switching circuits. Thus, it is important to characterize the transient behavior of the system and determine the response. Most ...

متن کامل

Three dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid

Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...

متن کامل

Numerical investigating the gas slip flow in the microchannel heat sink using different materials

In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...

متن کامل

Numerical Optimization of Trapezoidal Microchannel Heat Sinks

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 Re 600, 0.05W ...

متن کامل

Simulation of the Macroscopic Heat Transfer and Flow Behaviours in Microchannel Heat Sinks using Porous Media Approximation

Due to the high performance of electronic components, the heat generated is increasing dramatically and cooling system for such components becomes one of the most important issues to dissipate heat that generated in electronic component. In the present analysis, a microchannel heat sink configuration is simulated by modelling the stacked microchannel heat sinks in macroscopic scale as if it is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005